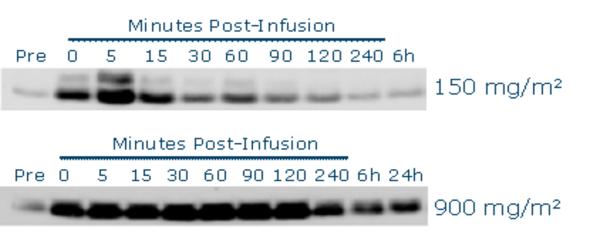


Francine Foss MD
Yale Cancer Center
New Haven, CT

Belinostat Development

• Belinostat is a hydroxamic based pan Class I ,2 , and IV HDAC inhibitor.


Selectivity of clinically advanced HDACi					
rhHDAC (Class)	Belinostat EC ₅₀ (nM)	Vorinostat EC ₅₀ (nM)			
1 (I)	41	68			
2 (I)	125	164			
3 (I)	30	48			
4 (I)	115	101			
6 (II)	82	90			
7 (II)	67	104			
8 (I)	216	1524			
9 (II)	128	107			

Multi-targeted cellular effects

- Tumor suppressor genes
 - reactivation of p21 WAF & p19 ARF => cell cycle arrest
- DNA damage & repair
 - increased DNA acetylation => chromatin unfolding => increased access to DNA (synergy DNA targeted drugs, e.g. platinums, anthracyclines, trabectedin)
 - impact on repair mechanisms, e.g. ERCC1, RAD51, XPF => decreased expression due to double strand breaks and interstrand cross-links (synergy DNA targeted drugs, e.g. platinums)
- Drug-targets (expression change)
 - thymidylate synthase (fluoropyrimidnes, antifolates)
 - EGFR (EGFR TKI's/Mab's)
 - aurora kinases A and B (Aurora inhib., vinca alkaloids)
 - topoisomerase II (anthracyclines, etoposide)
- a-tubulin (via HDAC6)
 - increased acetylation => stability (synergy taxanes)
- hsp90 (via HDAC6)
 - increased acetylation => promotes polyubiquitylation of misfolded client proteins (e.g Her-2, AKT, c-Raf, Bcr-Abl, mutant FLT-3) leading to proteasomal degradation (synergy bortezomib)
- <u>Immunological effects</u>
 - modulate activated T-cell responses (inhibit IL-2 release; induce apoptosis) and induce MHC class I-related chain A and B (MICA/B) expression on tumor cells and activated T-cells
- Anti-angiogenic effects
 - knockdown of HDAC6 causes down-regulation of VEGFR1/2

Belinostat Schedule

- Belinostat efficacy increases with higher exposure pre-clinically
- Belinostat studies in vivo demonstrates that 5 day regimen is superior to 1 or 3 days and not inferior to 10 days
- Clinical trials used 5 daily doses every 3 weeks
- 30-min infusion produces a PD effect lasting 24 hrs in patients

PD activity (histone acetylation) up to 24 hr in pts using 30-min infusion

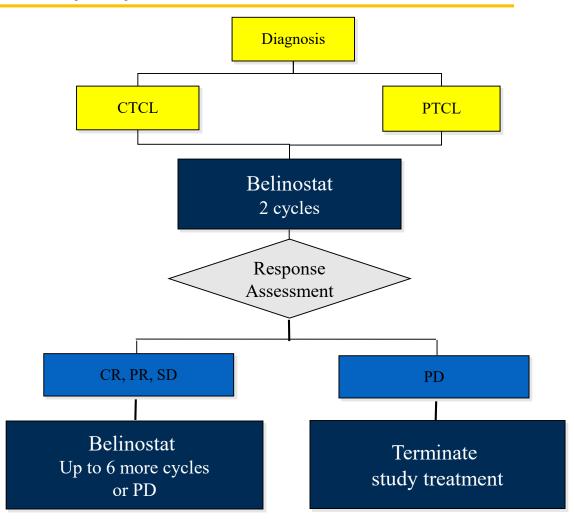
Phase I Experience with Belinostat

- Phase I dose finding in refractory hematologic malignancies
 - 600 mg/m2, 900 mg/m2, and 1000 mg/m2 for 5 days on 21 day cycle
 - no CR, 31% SD
 - Toxicities included grade 3 fatigue and neurologic symptoms
 - No MTD determined
- Parallel Phase I study in solid tumors determined MTD to be 1000 mg/m2
 - DLT was fatigue, diarrhea, atrial fibrIllation
- Oral studies in hematologic malignancies and solid tumors determined MTD to be 1500 mg and 750 mg respectively
 - Response rate not robust with oral dosing...

CLN-6: A Phase II Clinical Trial of Belinostat in pts with Recurrent or Refractory T-Cell Lymphomas

Study Objectives

Belinostat monotherapy


- Response rate, time to response, duration of response, time to progression
- Safety

Patient Population

- CTCL or PTCL
- Failed ≥ 1 prior line of therapy

Dosing

Belinostat 1000 mg/m² administered as a 30 min IV infusion once daily on days 1-5 every 3 weeks

Two-Stage Design (by study arm/diagnosis):

- terminate study arm if $\leq 1/13$ pts show response
- if $\geq 2/13$ show response continue enrollment

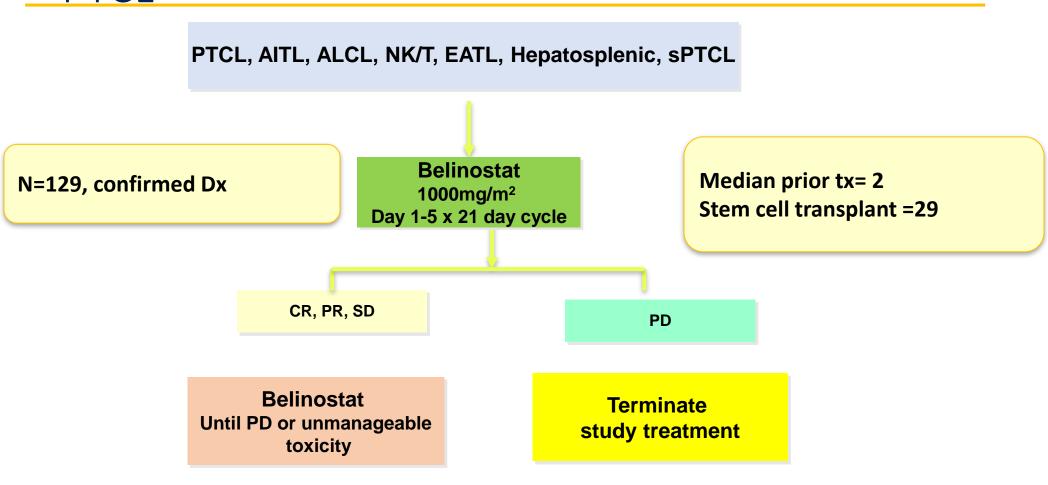
Foss et al, Br J Hematol, 2015

CLN-6: Clinical Outcomes

	PTCL	CTCL
Number of cycles, median	2 (1-8)	2 (1-14)
Evaluable patients	19*	29
Objective response	6 (29%)	4 (14%)
Complete response	2 [2 PTCLu]	2 [MF, ALCL]
Partial response	4 [PTCLu, AITL, ALCL, NK/T]	2 [MF, SS]
Time to response	67 (38-431) days	16 (14-35) days
Time to complete response	127 (114-140) days	128 (36-219) days
Duration of response	268+ (99-847+) days	273 (48-469+) days
Progression-free survival	40 (8-930+) days	44+ (16-483+) days

Belinostat- an active drug in CTCL?

- ORR belinostat 14%, Vorinostat 30%, romidepsin 34%
- 17 MF and 7 SS patients enrolled, Median age 69
- 18 pts were stage III/,IV, median MSWAT was 60
- 82% of patients had prior chemotherapy
- 7 of 15 pts with baseline pruritis had improvement
- 10pts (34%) had stable disease


Table V. Clinical characteristics of responders – ITT population.

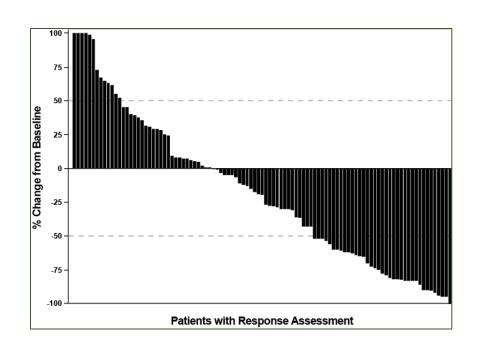
		Prior therapy					
Patient	Stage	Stem cell transplant	Systemic	Radiation	Response	Response	No. treatment cycles
PTCL.							
1	IIIA	No	CHOP	No	PR	CR	9
2	IIIB	No	denileukin diftitox, CHOP	No	CR	CR	4
3	IVB	Autologous		No*	CR	PR.	2
4	IVB	No	Prednisone, CHOP	No*	PR	PR.	6
5	IIA	No		No	CR	PR	8
6	IVA	No	CHOP, EPOCH	No	PD	PR	6
CTCL.							
7	IIB	No	CHOP, Interferon	Yes	NA	CR	5
8	IIB	No	Prednisone, Methotresate, Soriante, PUVA	No	PD	CR	14
9	IIA	No	Denileukin diftitox, Zolinza, Gemzar, Doxil	No*	PD	uCR.	4
10	IVA	No	CHOP, Interferon, Targretin, Isotrenitoin	No	SD	PR	6

CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone, CR, complete response, CTCL, cutaneous T-cell lymphoma, EPOCH, CHOP plus etoposide, ITT, intent to treat, No, number, NA, not assessable, PD, disease progression, PR, partial response, PTCL, peripheral T-cell lymphoma, PUVA, psoralen plus ultraviolet A, SD, stable disease, uCR, unconfirmed complete response.

^{*}Received systemic treatment and/or radiation therapy prior to 2003.

BELIEF Registration Study in relapsed/refractory PTCL

BELIEF: Patient Characteristics

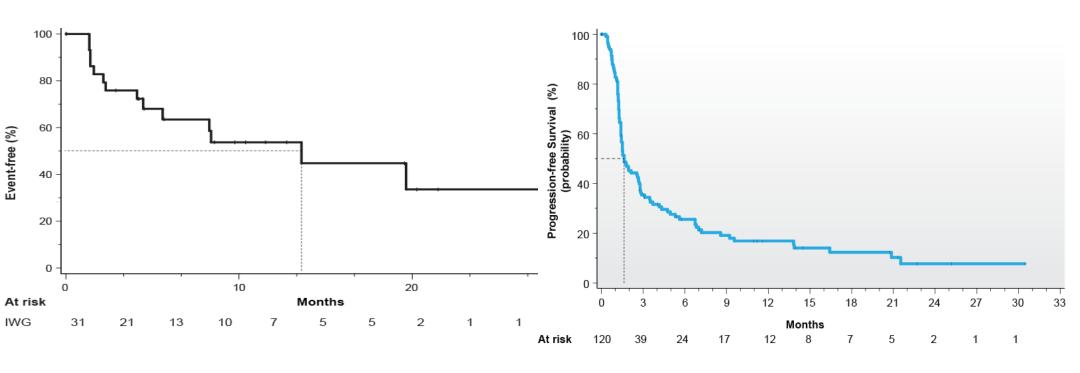

Gender				
Male	69 (54)			
Female	60 (46)			
Age				
<65	67 (52)			
≥65	62 (48)			
Median, yr (range)	63 (29-81)			
Race				
White	111 (86)			
Performance status, n (%)				
ECOG 0	44 (34)			
ECOG 1	57 (44)			
ECOG 2-3	28 (22)			
Median time from last disease progression to study entry (mo)				
Bone marrow involvement	30%			

Belief Study: Prior Therapies

	N = 129
Prior Therapy for PTCL	n (%)
Median number of therapies (range)	2 (1-8)
Systemic therapy	129 (100)
CHOP or CHOP-like	125 (96)
Stem cell transplant	29 (23)
Autologous	27 (21)
Allogeneic	2 (2)
Radiation therapy	28 (22)

PTCL Response Assessed by Central Review

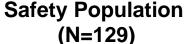
	Efficacy Analysis Set (N=120)			
Response	n (%)	(95% CI)		
ORR	31 (26)	(18-35)		
CR	13 (11)	(6-18)		
PR	18 (15)			
SD	18 (15)			
PD	48 (40)			
NE	23 (19)			

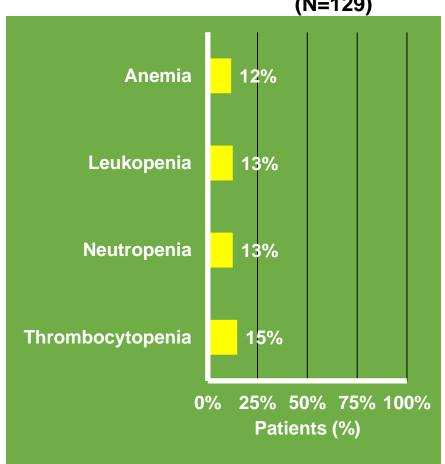


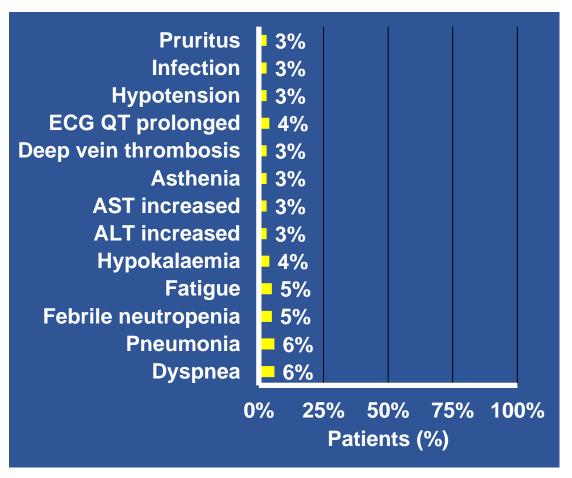
NE = not evaluable due to death (n=7), clinical progression (n=10), patient withdrawal (n=5) or lost to follow-up (n=1) prior to first radiologic assessment

Response Rate by CPRG Lymphoma Diagnosis

	Subset	Responders
CPRG lymphoma diagnosis	n (%)	n (%)
PTCL, NOS	77 (64)	18 (23)
AITL	22 (18)	10 (46)
ALCL, ALK-negative	13 (11)	2 (15)
ALCL, ALK-positive	2 (2)	0 (0)
Enteropathy-associated TCL	2 (2)	0 (0)
Extranodal NK/TCL, nasal type	2 (2)	1 (50)
Hepatosplenic TCL	2 (2)	0 (0)

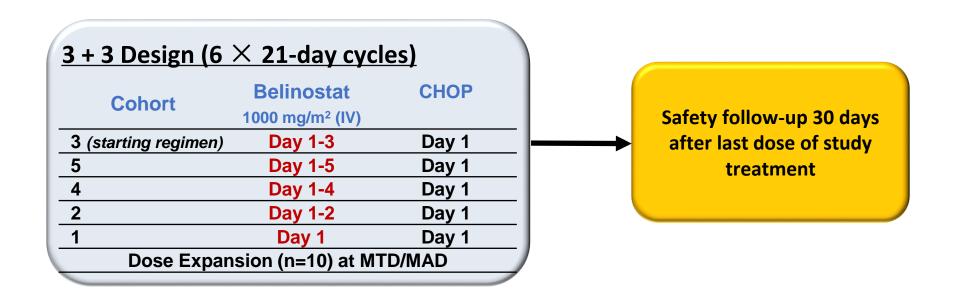

Response Duration and Progression Free survival




Median DoR: 13.6 months (95% CI, 4.5-29.4)

Median PFS:1.6 months (95% CI, 1.4-2.7)

Grade >3 Adverse Events


Conclusions from Belief Trial

- 26% ORR in all patients with R/R PTCL (N=120)
- Belinostat was well tolerated with a favorable safety profile, including patients with a previous autologous or allogeneic stem cell transplant
- Further investigation of belinostat in combination with other therapies is warranted to develop new treatment paradigms for PTCL

BEL- CHOP Study

- Phase I Study to find MTD of Belinostat with CHOP in patients with PTCL who had no treatment
 - Cohort 1: belinostat 1000 mg/m2 IV on Day 1
 - Cohort 2: belinostat 1000 mg/m2 IV on Day 1-2
 - Cohort 3: belinostat 1000 mg/m2 IV on Day 1-3
 - Cohort 4: belinostat 1000 mg/m2 IV on Day 1-4
 - Cohort 5: belinostat 1000 mg/m2 IV on Day 1-5
- Expansion cohort at MTD
 - Cohort 5 expansion just completed...

Phase 1 Bel-CHOP Study Design

- Primary Endpoint: Maximum Tolerated Dose (MTD) of belinostat in combination with CHOP (Bel-CHOP)
- Key Secondary Endpoints: Safety and ORR

Bel-CHOP Phase 1: Dose-Limiting Toxicities

- Part B expansion consisted of Cohort 5 dosing:
 - Belinostat Days 1-5 + CHOP

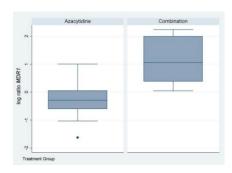
Adverse Event, n (%)	(N=23)
Any Event	18 (78)
Neutrophil Count Decreased	7 (30)
Anemia	5 (22)
Neutropenia	5 (22)
Febrile Neutropenia	4 (17)
Lymphocyte Count Decreased	4 (17)

3 + 3 Design (6	\times 21-day cyc	les)
Cohort	Belinostat	СНОР
Conort	1000 mg/m ² (IV)	
3 (starting regimen)	Day 1-3	Day 1
5	Day 1-5	Day 1
4	Day 1-4	Day 1
2	Day 1-2	Day 1
1	Day 1	Day 1
Dose Expar	nsion (n=10) at MT	D/MAD

Summary of Best Response

- 21 patients evaluable for efficacy
 - Cohort 3 = 7 out of 8 patients
 - Cohort 5 + Expansion Phase = 14 out of 15 patients
- ORR: 86% (18/21)
 - CR 67% (14/21)
 - PR 19% (4/21)

Conclusions


- Belinostat + CHOP combination was well tolerated
 - All agents administered at standard therapeutic doses and schedules
- AE rates were consistent with those observed with CHOP alone
- Encouraging clinical activity observed:
 - 86% ORR with 67% CR rate
- ? Benefit in Ro/CHOP, BelCHOP vs CHOP randomized trial planned

Combination Studies with Belinostat

- BelCaP (belinostat + carboplatin + paclitaxel)
- Relapsed Ovarian Cancer (PXD101-CLN-8; n=35)
 37% progression-free rate at 6 months, 5.5 mo median PFS
 - Bladder Cancer (after cis/gem)
 - 29% OR (n=14)
- BelFU (belinostat + 5-FU; n=35)
 - 26% SD with duration up to 41 weeks (median 3 prior regimens; majority ≥2 FU-based)
- BelAza (belinostat + azacitidine)
 - 2 CR, 1 PR & 4 hem. improvement (n=21)
 - Expansion to randomised phase started by NCI
- Bellda (belinostat + idarubicin)
 - 2 CR & 3 CRi using IV or CIV (n=34)
- BelDex (belinostat + dexamethasone)
 - 44% OR (2 PR, 2 MR; duration of 6 to +16w)
 - 56% SD with duration up to 58w

Phase I study of belinostat and azacitidine in myeloid malignancies

- AZA 75 mg/m2 daily x 5 with belinostat in Part 1
- Randomized to combo vs AZA in part 2 for cycle 1, then combo for subsequent cycles
 - 18 of 56 patients responded
 - MTD of belinostat 1000 mg/m2

ID#	Age	Diagnosis	Stage of disease	Cytogenetic risk group	No. prior regimens	Dose BEL	±No. cycles	Best responses	Time to initial response (days)	Response duration (days)
2	49	AML	Relapsed	Intermediate	5 [§]	150	9	HI-N	102	147
3	75	CMML-1	Refractory	Favorable	1	150	64	PR	27	1860
9	54	MDS-RCMD	Relapsed	Favorable	4 [§] *	300	11	HI-P	28	279
13	56	AML	Relapsed	Unfavorable	28	300	4	HI-N	59	41
14	67	AML	Refractory	Intermediate	2	300	6	CR^	49	239
15	67	PMF	Refractory	Intermediate	1*	1000	2	HI-P	21	35
17	70	MDS-RAEB-1	Relapsed	Unfavorable	2§	1000	6	HI-P	86	42
22	76	t-MN	Prev. untreated	Unfavorable	0	1000	4	CR^	21	399
24	68	MDS-RAEB-2	Prev. untreated	Favorable	1	1000	15	CR^	245	534

Invest New Drugs (2015) 33:371-379

Table 5 Nine responders in Randomized Phase (n=32)

ID#	Age	Diagnosis	Stage of disease	Cytogenetic risk group		Randomization arm (Cycle 1)	±No. cycles	Best response	Time to initial response (days)	Response duration (days)
31	57	MDS: RAEB-2	Refractory	Intermediate	1*	0	14	CR-marr	50	349
34	74	t-MN	Prev. Untreated	Unfavorable	0	1000	7	CR	59	161
36	63	AML	Relapsed	Intermediate	1	1000	5	CR^	98	59
48	69	CMML	Prev. Untreated	Intermediate	0	1000	6	HI-P/HI-E	28	141
49	77	MDS: RAEB-2	Refractory	Favorable	2*	1000	28	HI-E^	161	682
50	72	t-MN	Prev. Untreated	Unfavorable	0	1000	28	CR	41	753
51	53	AML	Relapsed	Intermediate	3 [§]	0	5	CR^	44	99
54	64	MDS	Refractory	Unfavorable	1	1000	6	HI-P	91	56
55	79	MDS	Relapsed	Unfavorable	1	0	5	HI-P	28	91

^{*}Prior therapy included hypomethylating agent § Prior therapy included allogeneic stem cell transplant *Number of cycles administered

HI-N, HI-P, HI-E denote hematologic improvement in neutrophils, platelets or erythroid lineage

^{*} Prior therapy included hypomethylating agent § Prior therapy included allogeneic stem cell transplant *Number of cycles administered ^Response was ongoing at the time of discontinuation of study treatment; HI-N, HI-P denote hematologic improvement in neutrophils or platelets

[^]Response was ongoing at the time of discontinuation of study treatment; CR-marr denotes complete response in the marrow

Phase I study of belinostat and AZD1775 in myeloid malignancies

- HDACIs disrupt the DNA damage response (DDR), including checkpoints and repair (e.g., HR and NHEJ).
- AZD1775 is an oral Wee-1 inhibitor tha7 interacts synergistically with pan- HDACIs (e.g., Belinostat) to kill human leukemia cells independently of p53 status, including those bearing FLT3-ITD.
- HDACI co-administration induced pronounced Wee1 and Chk1 inactivation, resulting in DNA damage and apoptosis.
- Phase I clinical trial of AZD1775 Belinostat in patients with R/R AML/MDS/CML-BC

Belinostat: The future

- Active in PTCL, more active in follicular helper subtype
- Toxicities easy to manage, no cardiac warning
- Combines well with several agents and with combination chemotherapy
- +short infusion time/- 5 day dosing schedule
- Synergistic interaction with multiple agents being exploited in clinical trials